Some infinite classes of Williamson matrices and weighing matrices

نویسنده

  • Ming-Yuan Xia
چکیده

Williamson type matrices A, B, C 1 D will be called nice if ABT + C DT = 0, perfect if ABT + CDT = ACT + BDT 0, special if ABT + CDT = ACT + BDT = ADT + BCT = o. Type 1 (1 , -1 )-matrices A, B, C, D of order n will be called tight Williamson-like matrices if AAT + BBT + CCT + DDT 4nIn and ABT + BAT + CDT + DCT o. Write N = 32T . piTl ••• p!Tn , where Pj 3(mod 4), Pj > 3, j = 1, ... ,n and r, rl , ... 1 rn are non-negative integers. In this paper we prove: (i) if there exist special Williamson type matrices of order n then there exist two disjoint amicable W(2n, n), whose sum and difference are (1 ,-1 )-matrices, and four disjoint and amicable W( 4n, n), whose sum is a (1 , -1 )-matrix; (ii) there exists an Hadamard matrix of order 4mn, where m is the order of tight Williamson-like matrices and n is the order of nice Williamson type matrices. Definition 1 Williamson type matrices A, B, C) D will be called nice if ABT + CDT = 0, perfect if ABT + CDT = ACT + BDT = 0, special if ABT + CDT = ACT + BDT ADT + BCT = 0 (see Definition 4, [2]). Definition 2 Type 1 (1 , -1 )-matrices A, B, C, D of order n will be called tight Williamson-like matrices if AAT + B BT + C CT + DDT = 4nIn and ABT + BAT + CDT + DCT = 0 (see Definition 5, [2]). Notation 1 Write N = 32r . pirl ... p!rn, where Pj 3(mod 4), Pj > 3, j = 1, ... ,n and r, rI, ... ,rn are non-negative integers. Australasian Journal of Combinatorics §( 1992), pp.107-110 Theorem 1 If there exist special Williamson type matrices of order n then there exist two disjoint amicable W(2n, n), whose sum and difference are (1 , -1}-matrices. Proof. Let AI, A2, A3, A4 be the Williamson type matrices of order n. Set Q = ~ [ Al A2 A3 A4] 2 A3 A4 Al A2 . Then P and Q are the required two W(2n, n). o Remark. W(2n, n), n odd, exist only if n is the sum of two squares (see Corollary 2.11 [1]). Coronary 1 There exist two disjoint and amicable W(2N, N), whose sum and difference are (1,-1}-matrices. Proof. N. From Theorem 5 [3] there exist special Williamson type matrices of order o Theorem 2 If there exist special Williamson type matrices of order n then there exist four disjoint and amicable W ( 4n, n), whose sum is a (1 , -1 }-matrix. Proof Set E = [~ n, F = [~ ~], G = [~ ~], H [~~], where P, Q were given in the proof of Theorem 1. Then E, F, G, H are the required weighing matrices. 0 Coronary 2 There exist four disjoint and amicable W(4N, N), whose sum is a (1 J -1}-matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further results on ternary complementary sequences, orthogonal designs and weighing matrices

A set of sequences is complementary, if the sum of their periodic or nonperiodic autocorrelation function is zero. Infinite families of orthogonal designs, based on some weighing matrices of order 2n, weight 2n− k and spread σ, are constructed from two circulants matrices by using complementary sequences of zero non-periodic autocorrelation function, i.e. ternary complementary pairs. Moreover, ...

متن کامل

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

On Some Special Classes of Sonnenschein Matrices

‎In this paper we consider the special classes of Sonnenschein matrices‎, ‎namely the Karamata matrices $K[alpha,beta]=left(a_{n,k}right)$ with the entries‎ ‎[{a_{n,k}} = sumlimits_{v = 0}^k {left( begin{array}{l}‎ ‎n\‎ ‎v‎ ‎end{array} right){{left( {1‎ - ‎alpha‎ - ‎beta } right)}^v}{alpha ^{n‎ - ‎v}}left( begin{array}{l}‎ ‎n‎ + ‎k‎ - ‎v‎ - ‎1\‎ ‎,,,,,,,,,,k...

متن کامل

Non-additive Lie centralizer of infinite strictly upper triangular matrices

‎Let $mathcal{F}$ be an field of zero characteristic and $N_{infty‎}(‎mathcal{F})$ be the algebra of infinite strictly upper triangular‎ ‎matrices with entries in $mathcal{F}$‎, ‎and $f:N_{infty}(mathcal{F}‎)rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $‎N_{infty }(mathcal{F})$; that is‎, ‎a map satisfying that $f([X,Y])=[f(X),Y]$‎ ‎for all $X,Yin N_{infty}(mathcal{F})...

متن کامل

An application of Fibonacci numbers into infinite Toeplitz matrices

The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1992